skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matteo Luisi, Dylan Linville"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4–8 GHz. The nominal survey zone is 32.3° > l > -5°, |b| < 0.5°. Here, we analyze GDIGS Hnα ionized gas emission toward discrete sources with sizes comparable to the 2.065' GDIGS Hnα beam. We use GDIGS data to identify the correct velocity of 39 H II regions that have multiple RRL velocity components. We identify and characterize RRL emission from 88 H II regions that previously lacked measured ionized gas velocities. We additionally identify and characterize RRL emission from eight locations that appear to be previously-unidentified H II regions and 41 locations of RRL emission that do not appear to be H II regions based on their lack of mid-infrared emission. We identify 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane and we compare the objects’ RRL data to 13CO, H I and mid-infrared data. These sources do not have the expected 24 μm emission characteristic of H II regions. Based on this comparison we do not think these objects are H II regions, but we are unable to classify them as a known type of object. 
    more » « less